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Received 31 August 1995

Abstract. By performing unitary transformations, the exact solution of the time-dependent
singular oscillator is obtained. The invariant operator and the auxiliary equation are rigorously
established. The non-adiabatic Berry’s phase is calculated.

It is well known that an exact and analytical solution of the Schrödinger equation can
only be found for a limited number of potentials. If the potentials are, in addition, time-
dependent it is very rare to be able to find an exact solution. In a series of papers, an
important class of Hamiltonians called the generalized harmonic oscillators was intensively
discussed [1–7]. Recently, Fu-li Liet al [7], using three consecutive unitary transformations
on the time-dependent Schrödinger equation, discussed the exact solution and the invariant
operator of a generalized harmonic oscillator. They have shown that the auxiliary functions
for constructing the invariant operator are just solutions of a linear differential equation for
the associated classical harmonic oscillator with time-dependent mass and frequency.

In the present paper, we apply the same approach as in [7] to the so-called ‘singular
oscillator’, i.e. a quantum particle moving in the potentialV (q, t) = 1

2[X(t)q2 +Z(t)l2/q2]
with time-dependent coefficient. As was shown in [8], the solvability of the singular
oscillator problem is explained by the fact that its Hamiltonian is a linear combination
of generators of theSU (1,1) algebra.

The one-dimensional system we study is described by the following Hamiltonian:

H = 1

2

[
Z(t)p2 + Y (t)(pq + qp)+X(t)q2 + Z(t)l2

q2

]
. (1)

It is a linear combination of generators of the algebraSU (1,1) provided that the ratio of the
kinetic and nonlinear terms is a constant. In equation (1)q andp are quantum mechanical
operators,X(t), Y (t), andZ(t) are arbitrary functions of time, andl is an arbitrary constant
which could be zero. We show that the exact solution of the singular oscillator can be found
by introducing three consecutive unitary transformations. In contrast to the approach of Fu-
li Li et al [7], a time-dependent invariant operator for the system and an auxiliary equation
appears automatically in this process by setting the global time-dependent frequency for the
singular oscillator equal to a real constant. On the basis of the exact solution, a non-adiabatic
Berry’s phase is calculated.

Now, we consider the singular oscillator with the Hamiltonian given by equation (1).
The system evolves in time according to the Schrödinger equation (assume ¯h = 1)

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉. (2)
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Suppose thatU(t) is a time-dependent transformation such that

|ψ1(t)〉 = U−1(t)|ψ(t)〉. (3)

Substituting (3) into (2), we find the equation of motion for|ψ1(t)〉,

i
∂

∂t
|ψ1(t)〉 =

[
U−1H(t)U − iU−1∂U

∂t

]
|ψ1(t)〉. (4)

In the above equation, the new Hamiltonian operator

H1 = U−1H(t)U − iU−1∂U

∂t
(5)

is Hermitian. This requires thatU(t) must be an unitary operator. Since the Hamiltonian (1)
of a system is time-dependent,U(t) results in an unitary transformation (3) for the
wavefunction and an unitary transformation (5) for the Hamiltonian so that the form of
the Schr̈odinger equation remains form invariant.

The key point of our analysis is to perform the three consecutive transformations

|ψ〉 = U1|ψ1〉 = exp

[
− i

2

∫ t

0
Y (t ′) dt ′(pq + qp)

]
|ψ1〉 (6)

|ψ1〉 = U2|ψ2〉 = exp[iC1(t)q
2]|ψ2〉 (7)

and

|ψ2〉 = U3|ψ3〉 = exp[iC2(t)(pq + qp)]|ψ3〉 (8)

whereC1(t) andC2(t) are real functions of time. These coefficients are chosen in such
a way that the Hamiltonian, after these transformations becomes a product of two factors,
namely a simple time-independentsingular oscillator Hamiltonian and a time-dependent
factor.

It can easily be shown that under these transformations the coordinate and momentum
operators change according to

U−1
1 pU1 = p exp

[
−

∫ t

0
Y (t ′) dt ′

]
(9)

U−1
1 qU1 = q exp

[ ∫ t

0
Y (t ′) dt ′

]
(10)

U−1
1

1

q
U1 = 1

q
exp

[
−

∫ t

0
Y (t ′) dt ′

]
(11)

U−1
2 pU2 = p + 2C1q (12)

U−1
2 qU2 = q. (13)

In order to solve (2) with the Hamiltonian specified by (1) we first try to remove the
mixed terms inq andp in the Hamiltonian (1). This can be achieved by the transformation
U1(t). Inserting (6) and (9)–(11) into (4), we have

i
∂

∂t
|ψ1(t)〉 = 1

2

[
1

m(t)
p2 + k(t)q2 + l2

m(t)

1

q2

]
|ψ1(t)〉 (14)

where

m(t) = 1

Z(t)
exp

[
2

∫ t

0
Y (t ′) dt ′

]
(15)

k(t) = X(t) exp

[
2

∫ t

0
Y (t ′) dt ′

]
. (16)
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Now let us perform the transformationU2(t). Substituting (7) into (14) and using (12)
and (13), we find the equation of motion for|ψ2(t)〉:

i
∂

∂t
|ψ2(t)〉 = 1

2

[
1

m
p2 + 2

C1

m
(pq + qp)+ 2

(
Ċ1 + 2

C2
1

m
+ k

2

)
q2 + l2

m

1

q2

]
|ψ2(t)〉. (17)

In order to remove the cross term in (17), we consider the transformationU3(t). Since
this transformation is formally the same asU1(t), this suggests that one takes

C2(t) = −
∫ t

0

C1(t
′)

m(t ′)
dt ′. (18)

With this choice, (17) is changed under the transformation into

i
∂

∂t
|ψ3(t)〉 = 1

2

{
1

m
exp

[
− 4

∫ t

0

C1

m
dt ′

] (
p2 + l2

q2

)
+ 2

(
Ċ1 + 2

C2
1

m
+ k

2

)
× exp

[
4

∫ t

0

C1

m
dt ′

]
q2

}
|ψ3(t)〉. (19)

Choosing

C1(t) =
√
Wm

2

(
ρ̇

ρ
− Y

)
(20)

whereW is a real constant andρ(t) is a real function of time, one can show that (19)
becomes

i
∂

∂t
|ψ3(t)〉 = 1

2

Z

Wρ2

[
p2 +�2q2 + l2

q2

]
|ψ3(t)〉 (21)

where

�2 = W 2 ρ
3

Z2

(
ρ̈ − Ż

Z
ρ̇ +

[
(XZ − Y 2)+ Ż

Z
Y − Ẏ

]
ρ

)
. (22)

The central idea in this procedure is to require that the Hamiltonian governing the
evolution of |ψ3〉 is a product of two parts: a simple time-independent singular oscillator
and a time-dependent factor. Let us set the global time-dependent frequency appearing in
(21) equal to a real constant

�2 = W 2 (23)

which amounts to imposing a constraint onρ. Equation(22) then becomes

ρ̈ − Ż

Z
ρ̇ +

[
(XZ − Y 2)+ Ż

Z
Y − Ẏ

]
ρ = Z2

ρ3
(24)

which is the well known auxiliary equation [8].
In order to obtain the invariant operator, consider the operator

I (t) = U1U2U3
1

2

(
p2 +W 2q2 + l2

q2

)
U−1

3 U−1
2 U−1

1

= W

2

[
ρ2+p2+

(
ρ2Y − ρρ̇

Z

)
(pq + qp)+ 1

ρ2

{
1 +

(
ρ2Y − ρρ̇

Z

)2
}
q2+

(
ρl

q

)2
]
.

(25)

ThusI (t) is exactly the invariant operator [8], which satisfies the equation

dI

dt
= ∂I

∂t
+ i[H, I ] = 0. (26)
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Obviously, one can write the solution of (21) as

|ψ3(t)〉 = exp

[
−i

∫ t

0

Z

Wρ2
dt ′

1

2

(
p2 +W 2q2 + l2

q2

)]
|ψ3(0)〉. (27)

Note that the evolution of|ψ3〉 is governed by a Hamiltonian which can be interpreted as
the radial part of a three-dimensional harmonic oscillator, wherel2 = c(c+ 1) is related to
the angular momentum. To get an explicit form of the solution, let us assume the initial
state

|ψ3(0)〉 = |n, c〉 (28)

which satisfies the eigenequation

1

2

(
p2 +W 2q2 + l2

q2

)
|n, c〉 = 2

(
n+ c

2
+ 3

4

)
W |n, c〉 n = 0, 1, 2, . . . . (29)

Inserting (29) into (27), we have

|ψ3(t)〉 = exp

[
−2i

(
n+ c

2
+ 3

4

) ∫ t

0

Z

ρ2
dt ′

]
|n, c〉. (30)

The exact solution of the original equation (2), can now be found by combining the
above results. We finally obtain

|ψs
n(t)〉 = exp

[
−2i

(
n+ c

2
+ 3

4

) ∫ t

0

Z

ρ2
dt ′

]
U1U2U3|n, c〉. (31)

In the q-representation, the state vector (31) takes the form

ψs
n(q, t) = exp

[
−2i

(
n+ c

2
+ 3

4

) ∫ t

0

Z

ρ2
dt ′

]
ψn(q, t) (32)

where

ψn(q, t) =
[

2

ρ

0(n+ 1)

0(n+ c + 3/2)

]1/2

exp

[
−1

2

(
q

ρ

)2 {
1 + i

Yρ2 − ρ̇ρ

Z

}]

×
(
q

ρ

)(c+1)/4

Lc+1/2
n

(
q

ρ

)
(33)

andLc+1/2
n denotes the generalized Laguerre polynomials. ApplyingI (t) to (33) we can

show thatψn(q, t) is an eigenstate ofI (t) with eigenvalue 2(n + c/2 + 3/4)W . Since
ψs
n(q, t), the solution of (2) with initial condition (28) differs fromψn(q, t) only by the

time-dependent phase

αn(t) = −2

(
n+ c

2
+ 3

4

) ∫ t

0

Z

ρ2
dt ′ (34)

the general solution of (2) can be written in the form

ψ(q, t) =
∑
n

an exp

[
−2i

(
n+ c

2
+ 3

4

) ∫ t

0

Z(t ′)
ρ2

dt ′
]
ψn(q, t) (35)

wherean are constants to be determined by the initial conditionψn(q, 0). Expression (35)
is just what is anticipated by the Lewis–Riesenfeld theory [9].

Now let us calculate the Berry’s phase [10] for the singular oscillator from the state
vector in theq-representationψs

n(q, t) (32). Suppose that att = 0, the system is in thenth
eigenstate of the invariant operatorI (t). It will evolve into the state specified by (32) at
a later timet . If the parametersX(t), Y (t), andZ(t) are periodic functions of time with
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periodT , i.e. (X, Y, Z)(t + T ) = (X, Y, Z)(t), equation (24) may have periodic solutions.
When the auxiliary function is periodic, i.e.ρ(t + T ) = ρ(t), then after one period of
evolution the system returns to the initial state except for acquiring the total phase

αn(T ) = −2

(
n+ c

2
+ 3

4

) ∫ T

0

Z

ρ2
dt. (36)

The conventional dynamic phase obtained over one period is

αDn (T ) = −
∫ T

0
〈ψn|H |ψn〉 dt = −2

(
n+ c

2
+ 3

4

) ∫ T

0

{
Z

ρ2
−

[
Yρ2 − ρ̇ρ

Z

]
ρ̇

ρ

}
dt. (37)

Therefore, the non-adiabatic Berry’s phase in a cyclic evolution [11] is given by

αBn (C) = αn − αDn = −2

(
n+ c

2
+ 3

4

) ∮
C

[
Yρ − ρ̇

Z

]
dρ (38)

whereC is a closed circuit in the parameter space.
In conclusion, we have found the exact solution of the time-dependent Schrödinger

equation for the singular oscillator by performing unitary transformations. The invariant
operator and the auxiliary equation are obtained. The calculation does not presuppose the
existence of an invariant operator or the knowledge of an auxiliary equation. We have also
found the exact expression of the non-adiabatic Berry’s phase.
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